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Abstract 

Some numerical  r e su l t s  a r e  presented for  the admittance of an 

infinite cylindrical  antenna excited at  a c i rcumferent ia l  gap of finite thick- 

n e s s  and immersed  in a lossy,  incompressible magnetoplasma, with the 

antenna ax is  paral le l  to the static magnetic field. 

performed using a f r e e  -space layer  of variable thickness (the vacuum sheath) 

to  approximate the positive ion sheath which fo rms  about a body at  floating 

potential in a warm plasma. The antenna admittance is obtained by a direct  

numerical  integration of the Four i e r  integral  for  the antenna current ,  and is 

presented for  plasma parameter  values typical of the E-region of the ionosphere. 

The calculations a r e  

The resu l t s  obtained show that in the frequency range encompassing the 

electron plasma (f ), electron cyclotron ( f  ) and upper hybrid frequencies,  the 

vacuum sheath considerably reduces variations in the admittance magnitude 

compared with the sheathless case.  

fh  for  the sheathless  case  and which is more  pronounced when f == f h  than for  

the case  where f < fh ,  is reduced in amplitude and shifted upward in frequency 

by the vacuum sheath. 

conductance a more  pronounced minimum near  f 

fp< fh, the conductance minimum is then l e s s  pronounced than the susceptance 

minimum, with the locations of these minima not appreciably different fo r  the 

shea th less  and vacuum sheath cases .  

P h 

An admittance maximum which occurs  at  

P 

P 
The susceptance exhibits a slight minimum and the 

when f >fh ,  while for  
P’ P 

A comparison of these calculated resu l t s  with some measurements  of 

antenna impedance in the ionosphere, shows there  to be a qualitative agreement 

between theory and experiment. In particular,  a n  admittance minimum or  d is -  

continuity has  be observed a t  the electron plasma frequency, s imi l a r  to  that 

s een  in  the calculated resul ts ,  while an admittance maximum has  been found 

above the electron cyclotron frequency, indicating the presence of a sheath. 

v i i  



I. Introduction 

There  is a grea t  deal of interest  today in the charac te r i s t ics  of 

antennas located in plasma media, such as the ionosphere, since a rocket 
o r  satell i te-borne antenna may se rve  as a probe to  determine the p ro -  

per t ies  of the ambient ionosphere, such as electron plasma frequency, 

collision frequency and temperature .  

taken in an  attempt to gain a better understanding of the relative importance 

of the var ious fac tors  which may influence the antenna admittance in the 

ionospheric plasma, such a s  acoustical and sheath effects 

the non-zero plasma temperature,  and the ionospheric magnetic field. The 

antenna geometry chosen for  the investigation is that of the infinite, cylin- 
dr ica l  dipole driven a t  a circumferential  gap of non-zero thickness, a 

geometry which allows a rigorous boundary value problem approach to  be 

used. 

f ie ld-free plasma was reported on previously by the author (Miller,  1967a), 

which we r e fe r  to  hereaf ter  as I, and which is extended in the present  repor t  

to  the anisotropic plasma, there  being a s ta t ic  magnetic field para l le l  to  the 

infinite antenna axis.  

electrokinetic (EK) electron pressure  wave wi l l  not be included in  the analysis,  

and i t  is in this  sense,  a zero  temperature  t reatment .  

at tempt to  account for  the positive ion sheath which fo rms  about a body at  

floating potential in  a non-zero temperature  plasma. 

used i n  that the plasma is of non-zero tempera ture  insofar as i t s  s ta t ic  behavior 

is concerned, but of ze ro  temperature  ( imcompressible)  in relation to i t s  

dynamic behavior. :: While it would be desirable  and more  rea l i s t ic  to  t r ea t  

the compressible  magnetoplasma, this is a generally very much m o r e  difficult 

problem than that discussed in I o r  to be considered here ,  and i t s  t reatment  

will be deferred to  a subsequent report .  A comparison of the theoretically 

determined r e su l t s  wi l l  be made with some experimental  measurements  of 

antenna impedance in the ionosphere. 

un less  otherwise indicated, and equations r e fe r r ed  to f rom I will be preceded 

by I. 

The present  study has  been under - 

which a r i s e  f rom 

The case  of the compressible (non-zero- temperature)  magnetic - 

The present analysis wi l l  differ f rom I in that the 

We will, as i n  I however, 

The plasma model thus 

The RMKS sys tem of units is used 

::This means  that the p re s su re  t e r m  is set  equal to ze ro  in the t ime varying 

e lec t ron  equation of motion. 

1 



11. Formulation 

Our description of the plasma fields proceeds f rom the t ime 

dependent Maxwell 's equations and the electron equation of motion, 

v x H ( r ,  t)= 6 E (r, t ) -  N(r,  t)V(r,  t )q  - -  OF- - - -- 
A + V( r, t ) .V )V(r, t )= - L E  ( r ,  t ) -  UV(r, t )  -- m -  - (3 - -  -- 

P(r, t)= kN(r, - t )T( r ,  - t)  - 
where E and H a r e  the total e lectr ic  and magnetic fields, - - 

(3) 

(3a) 

(3b) 

(3c) 

V, N and P a r e  the - 
macroscopic electron velocity, number density, and p res su re ,  T is the 

electron temperature,  -q and m a r c  the electron charge and mass ,  uis the 

electron collision frequency, 

of f ree  space,  k is Boltzmann's constant and r and t a r e  the space and t ime 

coordinates.  It should be noted he re  that while the p r e s s u r e  t e r m  in (3) has 

+?, and Po a r e  the permitt ivity and permeabili ty 

- 

been indicated to be a function of both space and t ime coordinate, our  t r ea t -  

ment here  wil l  neglect the p r e s s u r e  t e r m  in (3) .  The equations (3a-3c) a r e  

included to show the full s e t  required for  the compressible  plasma.  

quantity is the ratio of specific heats for  e lectron gas,  and it may be seen 

f r o m  (3b) and (3c) that if Y =  0, then the dynamic p r e s s u r e  t e r m  is zero .  

then is the implicit assumption in the f dlowing analysis  f o r  the unifrom plasma.  

The 

T h i s  

2 



We deal with (1) - ( 3 )  in the usual way, introducing t ime varying 

o r  dynamic perturbation quantities smal l  in comparison with the non-time 

varying o r  s ta t ic  quantities. Since the boundary value problem to be t rea ted  

depends on the model used to represent  the positive ion sheath, we w i l l  t r ea t  

separately in turn  in the following discussion the two sheath models to  be 

used in the analysis.  The f i r s t ,  o r  vacuum sheath model, rep laces  the actual 

sheath by a free space layer.  In the second, o r  inhomogeneous sheath model, 

an attempt is made to  include the actual sheath inhomogeneity in  the analysis.  

In e i ther  case,  the sheath fo rms  a concentric layer  between the antenna, 

located with i t s  axis  coincident with the z axis  of the cylindrical  coordinate 

sys tem ( p , ~ ,  z) and the external  uniform plasma, extending f rom cLp<s, - 

where c and s a r e  the cylinder and sheath-uniform plasma interface radi i  

respectively.  

nes s  6 a c r o s s  which a voltage Vo, independent of azimuthal coordinate T , 

is applied. Contrary to  the static magnetic-field-free case,  azimuthal as 

The antenna is excited by a circumferent ia l  gap of finite thick- 

w e l l  as z-directed cu r ren t s  are excited on the antenna. Our resu l t s  wi l l  be 

pr imar i ly  concerned with the z -component of cur ren t  which determines the 

admittance,  but some resu l t s  wi l l  also be given for  the q -current  component. 

3 



11. 1 Thevacuum Sheath 

The m e r i t s  and advantages of using the vacuum sheath model have 

been discussed in I, and so will not be considered fur ther  here .  Equations 

(1) - (3) a r e  l inearized by introducing the following se t  of variables,  

E ( r ,  t)  = e (r ,  t )  

H _ -  ( r ,  t)  = H; + - -  h ( r , t )  ; 

V (r ,  t )  = v - -  ( r ,  t)  

N ( r ,  - t)  = N + n (r, - t )  : In1 < < I N ~  

- -  - -  

lhl c <  !HI 

- -  

T ( r ,  t )  = T 

P ( r ,  t )  = P 

(43) 

(4f) 

The static externally applied magnetic field in the z-direction is H, and 

since the plasma is uniform, no static components of e lec t r ic  field o r  

e lectron density a r e  required.  

- 

- 

Upon introducing (4 )  into (1 ) - (3 ) ,  we obtain 

If we use the Four ie r  t ransform pair  7 iwt e ( r ,w)  d o  e (L-, t )  = - - -  21T 
-00 

e (r ,  t )  d t 
N - iwt e ( r , w )  = - -  

-00 

4 



We may solve f o r  G (r, w) from (10) t o  get - _  

where 

Equation (9) can then be written 

where 

N N 

n 

1 

h 

w w  
€ 1  = LA. 

( l - w  12) 
12 i w  w 

5 



The component equations of (8) and (9 )  a r e  then obtained by 

introducing a second Four i e r  t ransform pa i r  

e ( r , w )  dz 
5s 
- e ( p , F  , w )  

-03 

and a r e  found to be 

where the pr ime indicates differentiation with respect  to p.  

fields a r e  independent of the aziumthal coordinate. 

Note that the 

We may obtain expression for  the p and cp field components in 

t e r m s  of the z components, which a r e  

6 



D = A2 + B ~  

T2 2-. 

Finally, two coupled sca l a r  wave equations for  the z-components of the 

field are obtained, 
Q 

L J  

K O  €3 0 

z =I 
-A 

We note that when the static magnetic field is made zero,  then B and 

f t  become zero,  and (17)  decouples. 

s tandard technique when there  is a non-zero magnetic field. 

The equations a r e  decoupled by a 

F i r s t  we let  
4 - -  
e Z] T1l 

=!% 
SO that (17)  may be written 

Multiplying f r o m  the left by $ -' and then by T- - 'yields 

V 2 G  + T - b - ] Z T G  - _ -  = 0 
P -  - - 

7 



If T - is s o  chosen as to diagonalize the C - l Z  - -  t e r m  in (21),  then the equations 

are coupled, and 

V2 G . + A . G . = O ; j = l ,  2 
\ J J J  

where the Ai, the eigen values of the mat r ix  

a r e  solutions of 

c ' T . = ~ . T  ; j = 1 ,  2 
- -J J-j 

where T .  is an eigen vector of C ' .  Solving for 

J =  

f rom 
j - -J 

IC' -h .  11 = o  (24) - 

where the I 1 denotes the determinant of the enclosed mat r ix  a n d 1  - i s  the identity 

matrix,  we obtain 

The eigen vector elements a r e  found f rom (23) 

T 12=T22C;2/ (h, -C 1) (26a) 

T21=T1 lCa  1/  ( k 1 - C i 2 )  (26b) 

S 

e 

nce there  a r e  two equations for  determining the four  eigen vector 

two of them may be chosen arb i t ra r i ly ,  
ements T i j a  

8 



and for  convenience we se t  T = TZ2 = 1 i n  the following. 11 
The solutions of (22)  with which we are concerned are simply 

given by 

G.  = A . H  (2 )  ( 4 . p  ) 
J J O  J 

s ince ( 2 2 )  applies to the uniform plasma outside the vacuum sheath where 

the re  is one outward traveling wave of amplitude A .  fo r  each G 

a r e  of course  determined by the boundary conditions. 

The A .  
J j '  J 

One precaution must  

be mentioned here  and that is that the G. must  be well-behaved at  infinity. 

Consequently, the sign of the imaginary par t  of the Hankel function argument 

in  ( 2 7 )  must  be always negative, which specifies the sign of the root of h.. J 
Other ways of choosing the proper  solutions f o r  G .  have been discussed by 

J 
Seshadri  and Wu (1966),  which involve t ime casuali ty and requi re  changing 

the Hankel function kind r a the r  than the root sign of to  acheive the same  

end. 

J 

4 
In  the numerical  approach t o  be taken here ,  the fo rmer  approach is 

s t ra ight  forward and perhaps s impler  to apply, and fo r  this  reason  has  been 

used in  obtaining our  numerical  resul ts .  

The e lec t r ic  fields in the vacuum sheath a r e  easi ly  obtained f rom 

sca la r  potential functions as 
/=: 

where the e and m subscr ipts  denote the t r ansve r se  e lec t r ic  (TE) (eZ=O) and 

t r a n s v e r s e  nagnetic (TM) (hZ=O) polarizations, and the magnetic fields are 

found f r o m  ( 1 3 ) .  The potential functions are solution to  

9 



where 

and the superscr ipts  I and R denote respectively the fields incident on the 

sheath-plasma interface f r o m  the antenna, and those reflected back towards 

the antenna with the wave amplitudes given by A. 

The specification of the problem is completed by giving the boundary 

conditions which the f ie lds  must satisfy at the antenna surface and the sheath- 

plasma interface.  Six sca l a r  boundary conditions a r e  necessary  since there  

are  six wave amplitudes, o r  spec t ra l  Four i e r  coefficients, which a r e  func- 

t ions of /3 and w, to be determined. The continuity of the tangential e lec t r ic  

and magnetic f ie lds  at the sheath-plasma interface,  and the vanishing of the 

4' -component of e lec t r ic  field on the antenna surface produces five of the 

required six equations. 

The final boundary condition is a function of the exciting source,  in 

this  case  a circumferential  gap of thickness 6, centered at  z=O. A voltage 

Vo(t) which is indepe of azimuthal angle cp, is applied a c r o s s  the gap, 

so  that -Vo(t) = 62/ eZ(c,  z, t)dz (31) 
- 

and 6 << 2c, where c is the since e is zero f o r l z l > 6 / 2 .  If 6 < < ~ ~ ~  -1 
Z 

antenna radius, then e Z  is practically uniform a c r o s s  the gap, and 
c 

e Z ( c , z ,  t )  = -Vo(t) I C  ; I z I <  6 1 2  
c 

= o  ; I Z I  > 0 / 2  ( 3 2 )  

If the source is nonchromatic, i . e .  

Vo(t) = Voe iwt 

then 

where &w-u l )  is the delta function, and 
c 

( 3 3 )  

10 



Upon using (28) ,  (30) and (34), the boundary conditions on the 

antenna may be written as 

r ,"'- 
A 

where the pr ime now denotes differentiation with respect  to  argument.  

In a similar fashion, the boundary conditions at  the sheath-plasma in te r -  

face ( p = s )  a r e  

where the quantities on the righthand side of (36)  a r e  the plasma fields 

evaluated a t  p=s. 

The 6 x 6 mat r ix  represented by (35) and (36 )  may be reduced, by 

the use  of (15), (16), (19)  and (27),  to the following sys tem of equations, 

with the pr ime denoting differentiation with respect  t o argument,  
- 

(37) 

with A =  - 

11 



and where 

[AI = 

s1 qc 
iKEo 1s 

s2 = q x o  H I c  

0 

W(c ,  s t ) =  HlcH12s-  H '  

12 



Note that, in the plasma 
% = C3A1H; + C4A2H2 I 

1 * 1 

hv 

e =  Z AIHl + T12A2H2 

e = C A H + C2A2H2 
cp 1 1 1  

G 

95 
hZ = T21A1Hl+ A 2 H 2  

I 
l = c 3 e Z  + c ~ Z ;  

s3 e = C l e z  + c;:; 
c; = cl& c$ = c31K 
C; = c2&; c4 1 = ~ ~ 1 %  

where the s in (39b) is replaced by p,  while in the sheath 
1 - I  

1 5 1  

cp 

where 

with 

and w is set  equal to 0. 
T12 = T21 = 0 l 

P 
We may finally obtain the current  on the antenna a s  

Iz(z,  t )  = 2rch (z ,  t )  

4i -R +.rrc A m j  dp. 

iot = Iz ( z , o )  e 

13 



I ( Z, t )  = -  2rchz( Z,  t )  4J 

= I (z,w) eiwt = 2rcKQ(z,w) e iwt 
9 

Note that K is the cp -component of cur ren t  density, but that we w i l l  

present  the quantity I in o rde r  to  make a direct  comparison with Ii. 
cp 

cp 

We see  that Iz contains two t e r m s ,  the f i r s t  being that f o r  the 

f r e e  space current  on the infinite antenna and the second t e r m ,  which 

contains A 

antenna current .  

-R showing the perturbing influence of the plasma on the m’ 

Thus, with Izo the f r e e  space cur ren t ,  

Iz(z,w) - I (z,w) = A I  ( z , o )  zo Z 

The numerical  evaluation of I 

(1962) ,  and Einarson (1966)  while approximate analytic express ions  

have been derived by Chen and Kel ler  (1962)  and Fante  (1966) .  

cussion of both aspec ts  of this  problem is given by Miller (1967b). 

Note that the limits of integration of (42)  - (45) may be t ransformed to  

the range zero  to  infinity because the integrand functions a r e  even in p , 

and the exponential function then becomes c o s ( p  z). 

(z, w) has  been c a r r i e d  out ‘by Duncan zo 

A d is -  

14 



An important point to  consider in  evaluating (44) is that there  is 

an integrable singularity a t  p = KEo i n  the real par t  of the integral ,  but 

non-integrable singularit ies on ei ther  side of 0 = K 

part .  

obtained than the imaginary par t ,  since in  addition, the r e a l  component 

comes  entirely f r o m  the finite range p = 0 to  KEo while the imaginary 

component comes  f r o m  the ent i re  range of p . 

in  the imaginary Eo 
The r e a l  component of f r ee  space cur ren t  is thus more  readily 

When the ent i re  integrand 

appearing in (42) is examined however, i t  may be shown that the non- 

integrable singularit ies cancel, with the resul t  that the integration contour 

can follow the r e a l  p -axis.  The evaluation of (43) a l so  follows in the s a m e  

way. The details  a r e  shown in Appendix A. 

The numerical  problem of solving (42) and (43) is, while formally 

straightforward, quite complicated because of the nature of the integrand 

functions. These  integrand functions vary  over a wide range in magnitude, 

and a r e  very rapidly changing in  the vicinity of their  near  singularit ies with 

the resu l t  that the absc issa  spacing used for  the summing process  must  be 

adjusted accordingly. 

in te rva l  width, and making use of the Romberg integration technique w a s  

developed for  this  purpose. The details a r e  given by Miller (1967a); the 

An integration program using a variable integration 

main fea ture  of this  method is that the Romberg technique provides a con- 

vergence tes t  which allows the integration to  be performed maintaining a 

des i r ed  accuracy within each finite-width interval  of the p 

a t  the s a m e  t ime near ly  optimizing the number of absc issa  points required 

variation, while 

fo r  t h i s  des i red  accuracy.  

The antenna admittance is finally obtained f rom 
r 



where G is the conductance and B the susceptance. Not e that B is finite 

only fo r  a non-zero exciting gap thickness, while G is not generally sen-  

sitive to  the gap thickness, at  least  f o r  sma l l  gaps. 

of this  question is given by Miller (1967b). 

Fu r the r  discussion 

It should be noted that for  the r e su l t s  to be presented, only (42), 

evaluated a t  z = 6 / 2 ,  w a s  subjected to the convergence tes t  used for  the 

numerical  integration. 

required (which w a s  about 1 minute/admittance value on an  IBM 7090 

This  was done to minimize the computer t ime 

computer) to obtain the admittance values, the quantities of p r imary  

interest  in this study. Since the integrand of (43) may require  a different 

sequence of abscissa  spacings for  a prescr ibed summation accuracy than 

(42), this  means that the values obtained for  I 

accuracy as the corresponding Iz( 6 / 2 ,  w).  This  s a m e  observation applies 

t o  (42)  evaluated for  values of z other than 6/2, the value of z used for  the 

may not have the same  
(4 

convergence test .  

It is felt that the convergence e r r o r s  associated with replacing the 

integration process  by a summation a r e  no l a r g e r  than 1 o r  2 units in the 

third significant figure in the admittance. Another fac tor  in determining 

the final accuracy is the truncation e r r o r  result ing f r o m  terminating the 

infinite integration range at  a f inite6 value. The l a r g e s t 6  value that could 

be used generally w a s  determined by overflow in the computer,  i. e . ,  numbers  

too la rge  for  the  computer were obtained. The r e a l  component of cu r ren t  

f o r  the plasma medium, a s  fo r  free space mentioned above, is convergent on 

a finite P-range, generally w e l l  before any overflow problems a r e  encount- 

ered.  The imaginary component on the other  hand r equ i r e s  a considerably 

g r e a t e r  P-range in o rde r  to be determined t o  the same accuracy  a s  the r e a l  

16 



component, but it may happen that overflow occur s  before  th i s  range is 

entirely integrated, with a resultant decrease in the relative accuracy 

of the imaginary component. In addition, the imaginary component may 

a l so  change in sign asp  is increasing, s o  that the e r r o r  result ing f rom 

too-ear ly  truncation of the integration because of overflow may be r e -  

latively much larger. The overal l  accuracy of the conductance is e s -  

t imated to  be no less than 0. 1 percent. The susceptance may be l e s s  

well determined, and in presenting the resu l t s ,  those a r e a s  where the 

susceptance is estimated to  be known to no bet ter  than 10 percent a c -  

curacy wi l l  be denoted. 

when the 

(A discussion o r  the truncation e r r o r  result ing 

P-range is not l imited by overflow is given by Miller (1967a) ). 



11. 2 The Inhomogeneous Sheath 

The inhomogeneous sheath boundry value problem differs f rom 

that of the vacuum sheath discussed above in only the sheath of course,  

since the f i e lds  in the external uniform plasma a r e  described by the same  

equations. Consequently, the discussion h e r e  is concerned only with the 

sheath. 

ception that now (4a) and (4d) a r e  replaced by 

The uniform plasma equations apply in the sheath, with the ex- 

- -  E (r, t)  = - -  E (r) + - -  e ( r ,  t) ; le1 < <  IEl ( 4 4  

N (r, t )  = N (2) + II (r, - t)  : In{ < <  IN] (4d) ' 
P (I--, t)  = P (r-1 = k T N (r) (4f)  - 

We note that there  is a static component of e lec t r ic  field in the sheath, 

but since the EK wave is not considered in th i s  analysis,  i t s  effect on the 

E M  wave is an indirect  one produced by the result ing inhomogeneity in the 

electron density in the sheath. 

The static protions of ( 1 - 3 )  are now 

v x  E: (r-1 = 0 (47) 

(48) 

Since then f rom (47) 

- E = -v@ 
and N = Noo exp [ q @ ( g ) / k T ]  ( 4 9 4  

with Noo the electron density in  the uniform plasma.  The dynamic equations 

are unchanged f rom those which apply in the uniform plasma except that  now 

N is replaced by N (r). - 

The static sheath potential @ is taken as 

L J 
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with M an adjustable parameter  andGc  the cylinder potential, 

plasma interface. We thus solve 
N 52: N 

N N I  

0 hP 
e = ipe  + imp 

Z P 
rJ 

. c y  N lu - , I  
e = - e , / p - i ( ~ ~ * h  cp 0 2  

where mi is the ion m a s s  and k is Boltzmann's constant. 

discussion of this  f o r m  f o r  the potential is given by Miller (1966a). 

A more  complete 

The analysis follows that in the preceding section, through Eq. (16). 

The wave equations corresponding to (17) however now have additional t e r m s  

involving the f i r s t  derivative of the field components and cannot be decoupled 

in the same way. It thus becomes preferable to  deal numerically with the 

f i r s t  o rde r  differential equations (13) and (14) in the sheath and match these 

to  the analytic solutions obtainable in  the uniform plasma a t  the sheath-uniform 

subject to  the boundarycondition that at  p = c 
N r 
e = O  

e 
CQ 

x 
= - s ( p )  v0 6 ( u - u ' )  2 n  

Z 



and at p = S :  

73 7d 
= e  

<p I plasma e 

= e  I sheath z I plasma 

'9 I p lasma 

cp 1 sheath 
%5 s 
e 

h(p I sheath 

A) ';5 rv - - 

% 

h~ I sheath = hz I plasma 

The plasma fields may be written explicitely in t e r m s  of the Four i e r  

coefficients for  the t ransmit ted fields, as in  eq. ( 42 1, and upon 

eliminating the Four ie r  coefficients f rom the boundary conditions ( 5 2  

we obtain a t p  =s, with TI = 

) 

IT I - 

1 5  55 1 

C1 eZ + C2 hZ = CIHl (eZ-T12hZ) /HITI -C2H2 (eZT21-hZ) /H2T 
1" I I F ?  I 12 

(53a) 

The fourth o rde r  differential equation (50) together with the 

four boundary conditions (51) and (53) thus descr ibe the problem of the 

inhomogeneous sheath. Note that all quantities involving the electron 

density a r e ,  in the sheath, functions of the rad ia l  variable.  

The antenna cu r ren t  is obtained, as before, f rom the magnetic 

field on the cylinder surface,  and is 

Iz (z, t)  = 2rch (c, Z, t) cp 
00 

i p s  = c eiwt 1 e 

= I Z ( z , w  ) e 

hq ( c , p )  dP 
-00 

i w t  
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I (z, t )  = - 2 ~ 2 h  ( c ,  Z ,  t )  cp Z 

iwt 
= I ( z , w )  e (54b) 

The technique of solving such a two point boundary value problem 

is discussed in detail by Miller (1966b). 

two numerical  integrations, one to solve the differential equations and the 

other  t o  per form the integration over p . 
consuming calculation, and for  this  report ,  numerical  resu l t s  are  to  be 

presented for  only the vacuum sheath model. 

It involves in the present  problem, 

Consequently, this  is a ve ry  t ime 
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111. Numerical Results 

111. 1. The Infinite Antenna Admittance. 

The resu l t s  to be presented a r e  for  an antenna of radius  c = 1 cm, 

a gap thickness 6 of 0. 1 c m  and plasma parameter  values typical of the E 

region of the ionosphere. An electron temperature  of 1, 500 OK wi l l  be used 

fo r  the purpose of computing the vacuum sheath thickness X, which is given in 

units of the electron Debye length 9 F o r  purposes  of comparison, the 

f ree-space  antenna admittance is given in Fig. 1 over the frequency range 

* 
. 

0. 25 to  10 MHz. with the gap thickness a parameter  on this  one graph only, 

ranging f r o m  10 to 10 cm.  It may be seen that the conductance and -1 - 3  

susceptance a r e  ra ther  slowly increasing functions of the frequency and in 

addition, the susceptance is only slightly dependent upon the gap thickness, 

over  th i s  frequency range. The r e su l t s  of Fig. 1 w i l l  be useful in i l lustrating 

the magnitude of the perturbing influence of the plasma upon the antenna 

admittance. 

The antenna admittance in the plasma medium is shown a s  a 

function of excitation frequency in Fig. 2 f o r  a plasma frequency of 1. 5 MHz, 
-1 an  electron collision frequency of 10 sec  , a n  electron cyclotron frequency of  

1 MHz and a sheath thickness X, of 5 4 
electron temperature  of 1, 500 

( s  = 8.9988 cm)  calculated fo r  an 

The susceptance is seen to  have a z e r o  0 K. 
2 c lose to, o r  at, the upper hybrid frequency w = u2 + w2 while the conduc- 
t P h  

tance has  a rather  sha rp  minimum there .  

frequencies,  the conductance and susceptance both r each  a maximum, with a 

Between the upper hybrid and plasma 

subsequent minimum a t  about the p lasma frequency. 

maximum is reached between the plasma and cyclotron frequencies,  with the 

conductance rather  slowly decreasing in  value as the frequency is futher decreased,  

Finally another l a r g e r  

while the susceptance falls off much m o r e  rapidly. The susceptance actually 

becomes capacitive again below approximately 0. 4 MHz. 

* Q = 7 / k  T / m  /G,  R P' 
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Fig. 1. The f ree-space  infinite cylindrical antenna admittance as a 

function of frequency with the exciting gap thickness, 6 , a 
parameter ,  and a radius, c, of 1 cm.  
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Fig. 2. The infinite antenna admittance as a function of frequency fo r  
the zero- tempera ture  magnetoplasma with a vacuum sheath 
thickness, X, of 5 9  , a radius  of 1 cm,  an  electron p lasma 
frequency of 1. 5 MHz and electron cyclotron frequency of 
1 MHz. 
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Corresponding r e su l t s  for  the same  plasma parameter  values 

as f o r  Fig. 2 except f o r  ze ro  sheath thickness a r e  shown in Fig. 3. (The 

regions of the curves on this graph and those to  follow where the accuracy is 

est imated to  be no bet ter  than 10 pe r  cent are shown by the superimposed 

c rosses .  

function and the behavior of the summed answer for  (42)  a s  the upper l imit  

is increased in  magnitude. 

accuracy may be l e s s  than desired,  the general  t rend of the admittance can 

be exhibited. ) It is apparent that the essent ia l  fea tures  of the 5 D II 
vacuum sheath resu l t s  a r e  contained in a more  exaggerated f o r m  in Fig.  3. 

In par t icular ,  the minima in the conductance at  the upper hybrid frequency 

and that nea r  the plasma frequency a r e  m o r e  pronounced, while the maximum 

in  both susceptance and conductance has become much sha rpe r  while shifting 

down f r o m  just  below the plasma frequency to the cyclotron frequency. 

about 0. 5 MHz and above the upper hybrid frequency, the admittance for  the 

5 DE sheath and sheathless cases  a r e  quite similar. It is apparent f rom 

Figs .  2 and 3 that the sheath is fa i r ly  effective in decoupling the antenna 

f r o m  the plasma, particularly at  the electron cyclotron frequency. 

This  es t imate  is based on examining the variation of the integrand 

The resu l t s  are presented because while the 

thick 

Below 

F o r  purposes  of comparison, the antenna admittance for  the com- 
0 

press ib le ,  magnetic-field f r e e  plasma, with an electron temperature  of 1, 500 K, 

is presented in Fig. 4 for  X = 5 9 
p a r a m e t e r s  the same as fo r  Figs.  2 and 3. The susceptance ze ro  and con- 

ductance minimum which Occur f o r  the magneto-plasma at  the upper hybrid 

frequency a r e  seen  in the compressible magnetic-field-free plasma to  occur 

a t  the p lasma frequency. 

4 and 5 below the plasma frequency is not as varied as that for  the previous 

case, but again a conductance and admittance maximum is found in this  region. 

It is of i n t e re s t  to  r e m a r k  that the resul ts  presented in I showed that except 

and Fig. 5 f o r  X = 0, with the other 

The s t rucutre  of the admittance cu rves  in Figs.  
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Fig.  3 .  The infinite antenna admittance a s  a function of frequency f o r  
the ze ro  - temperature  magnetoplasma with z e r o  sheath thick- 
ness,  an electron plasma frequency oi 1. 5 MHz and electron 
cyclotron frequency of 1 MHz. 
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Fig. 4. The infinite antenna admittance as  a function of frequency for  
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thickness of 5 DA , and an electron plasma frequency of 
1. 5 MHz. 
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f o r  the ze ro  temperature  sheathless case,  an admittance maximum of this 

s o r t  w a s  found to occur below the plasma frequency. It appears  that in  

o rde r  for  such an admittance maximum to resul t ,  a sheath, magnetic field, 

or finite e lectron temperature  are required.  

Resul ts  corresponding to  those of Figs. 2 and 3 a r e  now given in 

Figs.  6 and 7, where now f = 1.5 MHz and f = 1 MHz, the other parameter  

values remaining the same.  sheath case, it 

may be seen that the conductance minimum a t  the hybrid frequency is now 

h P 
If we observe first the 5 9 

narrower ,  and that the maximum in the conductance now occurs  between the 

cyclotron and upper hybrid frequencies. 

is a l so  not as wide in Fig. 6 as in Fig. 2 .  

The region of inductive susceptance 

The re  is a conductance minimum, 

not very  pronounced, at  the plasma frequency, while the susceptance has  a 

sha rp  minimum somewhat below the plasma frequency. Above 2 MHz, the 

r e su l t s  of Figs. 2 and 6 a r e  quite s imilar .  

A similar comparison of Figs. 3 and 7 a l so  shows a shifting upward 

of the conductance and susceptance maxima to the new location of the cyclotron 

frequency. 

1. 5 MHz cyclotron frequency case,  a s  w a s  found for  the 5 D e 
Below the cyclotron frequency, the sheathless and 5 De 

Figs .  6 and 7 a r e  quite similar, as w a s  found previously for  the 1 MHz cyclotron 

frequency r e sult s . 

Again, the region of inductive susceptance is smal le r  for  the 

thick sheath. 

thick sheath cases of 

In Figs. 8 and 9 a r e  shown the azimuthal current ,  I = 2 ~ c  K,, 
cp 

calculated a l so  a t  z = 6 / 2 ,  f o r  the 5 DL and ze ro  sheath thickness c a s e s  

respect ively and the same plasma parameters  as Figs. 6 and 7. The azimuthal 

cu r ren t  is seen  to  be most  strongly excited in  the vicinity of the upper hybrid 

frequency f o r  the 5 D 

of the axial current .  

at the cyclotron frequency and is l a rge r  by comparison with the axial  cu r ren t  

- 2  thick case,  and except in this  a r e a  is l e s s  than 10 t 
F o r  the sheathless case,  the aximuthal cur ren t  is la rges t  
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Fig .  6 .  The infinite antenna admittance as a function of frequency f o r  

the ze ro  tempera ture  magnetoplasma with a vacuum sheath 
thickness of 5 Dl , an  electron plasma frequency of 1 MHz 
and an electron cyclotron frequency of 1. 5 MHz. 
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Fig. 7. The infinite antenna admittance as a function of frequency fo r  
the ze ro  tempera ture  magnetoplasma with ze ro  sheath thick- 
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than the situation f o r  the 5 D thick sheath. The sheathless cur ren t  is seen  

to  exhibit the basic fea tures  of the 5 D e 
fo r  the z-component of cur ren t  in the preceding graphs.  

fo r  f < 0. 9 MHz in  Fig. 9 because of uncertainty in the resu l t s .  It w a s  men- 

tioned that only I z ( @ / 2 ,  a) was subjected to  the convergence tes t  involved in 

the numerical  integration of the integral  (42)  and (43) because our  p r imary  

concern has  been to obtain the antenna admittance. 

accuracy of I 

only where the convergence of I 

!L 

thick sheath resul ts ,  a s  w a s  the case  

Values a r e  not given 

c 

Consequently, the numerical  

cannot be specified; however, values a r e  given in Figs. 8 and 9 
cp 

appears  to be reliable.  

The azimuthal cur ren t  a r i s e s  because the axial  magnetic field causes  
cp 

the antenna to excite a wave with a z-component of magnetic field, a wave 

which is not excited when the static magnetic field is z e r o .  Consequently, 

it  is not unexpected that the azimuthal cur ren t  is maximum near  the electron 

cyclotron frequency. The total  surface cur ren t  on the antenna which r e su l t s  

f rom adding the z a n d  cp components is helical  in  nature.  

A s  the last graph of this s e r i e s  we present  in  Fig. 10a the antenna 

admittance as a function of plasma frequency fo r  a fixed excitation frequency 

of 1 . 0  MHz and a cyclotron frequency of 1. 47 MHz,  with the other pa rame te r  

values as in the preceding graphs.  

cyclotron frequency were chosen to  conform to some experimental  data of 

Stone, Weber and Alexander (1966)  obtained f rom a rocket -borne antenna in  

the ionosphere. 

These values of exciting frequency and 

The conductance is seen  to  be fa i r ly  constant fo r  f < f but i nc reases  
P 

almost exponentially with increasing f beyond th is  point. The susceptance is 
P 

capacitive for  f < 1.25 MHz but becomes inductive f o r  l a r g e r  f The ca l -  

culated values of the susceptance are  not ve ry  rel iable  for  f S 1.5 MHz 

because of computational problems related to  overflow. 

is important in this  range of f 

P P' 

P 
This  consideration 

because the susceptance is essent ia l ly  obtained 
P 
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as the difference of two numbers  large compared with the final answer.  

Consequently the e r r o r  result ing from the overflow termination before 

the truncation e r r o r  i s  acceptably small  is most  important here .  

values greater than 2 MHz this  problem is not a s  se r ious .  

For f 
P 

It is interesting to compare  the resu l t s  of Fig. 10a with the experi-  

mental  measurements  of Stone e t .  al. mentioned above (given in the i r  Fig. 

4 and shown in Fig. lob), which a r e  plotted as measured reactance and 

res i s tance  divided by the f ree  space impedance of the antenna. 

mittance values of Fig. 10a may be used to obtain impedance values (a lso 

shown on Fig. loa), of which the resis t ive par t  exhibits a slight peaking and 

then a decreasing trend with increasing f as do the measured res i s tances .  

The measured reactance however, does not change from capacitive to  in- 

ductive as does the calculated value for  the infinite antenna. The calculated 

r e su l t s  a r e  for  a s ta t ic  magnetic field paral le l  to  the infinite antenna, while 

the expremental  resu l t s  a r e  for  the situation where the antenna is almost  p e r -  

pendicular to  the field, so  that some of the difference between theory and ex-  

per iment  may be due to this  factor.  

the sheathless  case,  and it has  been found that a sheath may somewhat reduce 

the region of inductive susceptance. 

infinite dipole and a comparison with measured resul ts ,  particularly the 

reactance whose sign is dependent upon the antenna length, must bear  this  

in mind. 

s i m i l a r  qualitative behavior a s  a function of plasma frequency. 

The ad- 

P’ 

In addition, the calculated resu l t s  a r e  fo r  

And finally, the calculations a r e  fo r  the 

On the whole, the calculated and measured impedances show a 
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111. 2.Comparison of Finite and Infinite Antenna Results:  

We now present f o r  purposes of comparison some admittance curves  

fo r  a finite length dipole antenna of half-length h equal to  3.048m(lOft. ) 

immersed  in a zero- temperature  magnetoplasma with a paral le l  magnetic 

field calculated f r o m  an expression derived by Balmain (1964). The dipole 

rad ius  is 1 cm,  the same  as that of the infinite antenna just  discussed. The 

admittance curves a r e  shown in Fig. 11 for  f h  = 1. MHz and f = 1 .5  MHz, 

and in Fig. 12  for fh  = 1. 5 MHz and f = 1 MHz, and with v= 10 sec-', the 

value prevlmsly  used. 

P 

P 

A comparison of Fig. 11 with the corresponding sheathless  case  f o r  

the infinite antenna of Fig. 3 shows that the finite antenna admittance is 

qualitatively very similar to  that of the infinite antenna for  the frequency 

range encompassing the electron cyclotron frequency and upper hybrid 

frequency . 
magnitudes a r e  different. 

a t  the electron cyclotron frequency, while the conductance of each exhibits a 

r a the r  well pronounced maxima and the susceptance a l e s s  sha rp  discontinuity 

in  slope near  the electron plasma frequency. 

In both c a s e s  the s t ruc ture  of the curves  is s imi la r ,  though their  

Each of the antennas has  an admittance maximum 

The principal differences between Figs. 3 and 11 is the a r e a  below 

the electron cyclotron frequency of 1 MHz, where the infinite antenna susceptance 

r ema ins  inductive until the frequency becomes less than 0. 6 MHz, in contrast  

t o  the finite antenna susceptance which becomes inductive immediately below fh' 

In addition the finite antenna conductance dec reases  r a the r  sharply with decreasing 

frequency whereas the infinite antenna conductance r a t e  of dec rease  is much l e s s .  

Above the upper hybrid frequency, the finite and infinite antenna susceptances 

a r e  s imi la r .  

while a l so  the finite antenna conductance has  no minimum as does the infinite 

The conductances however differ  in  th i s  range by o r d e r s  of magnitude, 
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Fig. 11. The finite antenna admittance as a function of frequency fo r  
the zero- temperature  magnetoplasma with an electron plasma 
frequency of 1. 5 MHz and electron cyclotron frequency of 
1 MHz f r o m  the theory of Balmain (1964). 
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Fig. 12 .  The finite antenna admittance a s  a function of frequency fo r  
the zero- tempera ture  magnetoplasma with an electron plasma 
frequency of 1 MHz and electron cyclotron frequency of 1. 5 MHz 
from the the,C,y of Balmain (1964) .  
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antenna, at the upper hybrid frequency. This  difference between the finite 

and infinite antenna conductances near the upper hybrid frequency may be 

explained by taking into account the difference between the i r  f r ee -  space 

admittances and the near-field antenna behavior; a discussion is given i n  I. 

If Figs .  7 and 1 2  are now examined where the r e su l t s  for  f < fh, 
P 

a r e  presented the infinite and finite antenna admittances may be seen to  

p 'fh* compare  with each other in somewhat the same fashion as the c a s e  for  f 

The conductance and susceptance are seen to  have a maximum a t  the electron 

cyclotron frequency. A r a the r  shallow minimum in the infinite antenna con- 

ductance and a much deeper minimum in the finite antenna conductance a r e  

seen  to  occur  near  the plasma frequency, while the converse behavior is 

observed in the susceptances.  Again, the finite antenna susceptance is 

inductive between the upper hybrid and  e lectron cyclotron frequencies,  while 

the infinite antenna inductive susceptance region extends to  a slightly lower 

frequency. 

t he re  is the grea tes t  difference between the admittances of the infinite and finite 

Above the upper hybr id  frequency and below the plasma frequency, 

antennas,  as in the case  for  f > f h .  
P 

It is of significance and interest  to  note that both the finite antenna 

admittance resu l t s ,  presented in  Figs. 11 and 1 2 ,  and the infinite antenna 

r e s u l t s  previously given, exhibit a discontinuity in slope o r  a minimum in the 

admittance,  at the electron plasma frequency, a feature  exhibited by the experi-  

mental  data of Heikkila et  a1 (1966), obtained f r o m  a rocket-borne antenna in the 

ionosphere.  This  charac te r i s t ic  of the experimental  admittance. resu l t s  w a s  

used  by Heikkila e t  a1 to  obtain electron density values, although their  appli- 

cation of this technique w a s  apparently empirical ,  not having been predicted by 
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any theory and instead showing i.;p unexpectedly in the i r  data. 

r e su l t s  obtained he re  would appear  t o  provide some means f o r  explaining the 

experimental  data and provide a f i r m e r  bas i s  for  fur ther  exploiting this  feature  

of the antenna admittance as an additional technique for  measuring ionospheric 

e lectron densities. It is of interest  to  mention that in addition, the experimental  

r e su l t s  of Heikkila e t  a1 (1966)  show an  admittance maximum slightly above the 

electron cyclotron frequency. In view of the calculated admittance values p r e -  

sented here ,  this location of the admittance maximum would Seem to indicate 

the presence of a sheath, which the calculations have shown, would shift such 

an admittance maximum upward f rom the cyclotron frequency. 

The theoretical  
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IV. Summary and Conclusions. 

Th i s  investigation h a s  been concerned with finding the admittance of 

an infinite, cylindrical  antenna which is exci ted at  a circumferent ia l  gap of 

finite thickness and immersed  in  a zero- temperature ,  lossy,  anisotropic 

plasma with i t s  ax is  paral le l  to  the static magnetic field. 

admittance has  been obtained numerically over a frequency range encompassing 

the electron plasma and cyclotron frequencies and the upper hybrid f~requency 

f o r  plasma parameter  values typical of the E-region of the ionosphere. 

sheath model and inhomogeneous sheath model were considered in the analysis,  

but only the vacuum sheath model w a s  used in obtaining the numerical  resul ts .  

In addition to  the admittance, which involves finding the axial  antenna current ,  

some re su l t s  were given for the azimuthal antenna current .  

comparison of the infinite antenna resu l t s  were made with admittance values 

obtained f rom a finite antenna model due to Balmain. 

The antenna 

A vacuum 

Finally a 

The  infinite antenna admittance r e su l t s  presented show that the vacuum 

sheath tends to  decouple the antenna f rom the plasma, par t icular ly  at  the 

electron cyclotron frequency, and more  generally has  the effect of reducing the 

magnitude of the admittance variations in  the frequency range encompassing 

the upper hybrid, electron cyclotron and electron plasma frequencies,  compared 

with the sheathless  case .  

re la t ively l i t t le effect  on the admittance, especially above the upper hybrid 

frequency. 

the e lec t ron  cyclotron frequency is l e s s  than the electron plasma frequency. 

For frequencies outside th i s  range, the sheath has  

The sheath in  addition appears  to  have i t s  g rea tes t  influence when 

The  antenna susceptance is capacitive above the upper hybrid frequency, 

becoming inductive below th is  frequency. 

capacit ive when the frequency is less than the electron cyclotron frequency, 

with the location of the susceptance ze ros  appearing to  have no relation to  the 

The susceptance may again become 
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plasma frequency. 

admittance minima which occur  near  it, but does not generally appear  t o  give 

rise to  as marked variations in antenna admittance as the electron cyclotron 

and upper hybrid frequencies.  The conductance is, broadly speaking, l a r g e r  

above the electron plasma frequency and l e s s  below i t  fo r  the 5-DL thick sheath 

a s  compared with the sheathless  case.  

more  capacitive for frequencies above the electron cyclotron frequency and 

more  inductive below it f o r  the 5-Dl sheath compared with the sheathless  case .  

The electron plasma frequency appears  to  be related to 

Similarly speaking, the susceptance is 

A comparison of the zero- tempera ture  magnetoplasma admittances 

with corresponding resu l t s  for  the magnetic-field-free warm plasma with a 

tempera ture  of 1500 K shows that the admittance minimum which occur s  at  the 

upper hybrid frequency in the fo rmer  case  is shifted to  the electron plasma 

frequency in the la t ter .  The r e su l t s  for  the two plasma models above these  

respective frequencies a r e  quite s imi la r ,  while for  frequencies l e s s  than these 

the admittances are generally quite d i f f e red .  

that an admittance maximum is found to occur  below the upper hybrid o r  

e lectron plasma frequency for  the respective plasma models mentioned above, 

but which is not present when the magnetic field, sheath thickness and tempera ture  

a r e  all zero.  

0 

'It is interesting to  note however, 

Some admittance r e su l t s  obtained fo r  a finite antenna oriented para l le l  to  

the s ta t ic  magnetic field and using the s a m e  plasma pa rame te r  values as fo r  the 

infinite antenna calculations revea ls  that while t he i r  admittance magnitudes a r e  

quite different, t he re  is a qualitative s imi la r i ty  in the frequency variation. 

A similar resul t  w a s  previously found in I f o r  the zero- tempera ture ,  magnetic- 

f ield-free plasma. 

be u s e f u l  in at least  qualitatively determining t h e  effects  on the admittance of a 

finite antenna of varying the var ious p lasma pa rame te r s ,  a t  least  fo r  the sheathless  

case.  

Consequently, it would appear  the infinite antenna r e su l t s  may 

While this may not appear  t o  be an  advantage in  the situation mentioned 

44 



since closed-form expressions a r e  already available for  the finite antenna, 

that is not the case  f o r  the non-zero temperature  plasma, with o r  without 

a magnetic field. 

purpose for  the la t te r  case.  

include a sheath, a fea ture  not presently available in the finite antenna approach, 

which as has  been seen, may have a considerable influence on the antenna 

admittance. 

can support sur face  waves which may to  some extent nullify the correspondence 

between the infinite antenna admittance and the r e su l t s  fo r  a s imi la r ly  sheathed, 

finite antenna. 

Thus the infinite antenna analysis  may s e r v e  a ve ry  useful 

In addition, the infinite antenna analysis  may a l so  

Some caution must be exercised he re  however, since the sheath 

The resu l t s  thus far obtained in I and the present  study have provided 

some bas i s  fo r  comparison with, and interpretation of, experimental  measu re -  

ments  of antenna admittance in an ionized medium. 

in  the direction of extending the analysis to the m o r e  general  ca se  of the com- 

press ib le  magnetoplasma is indicated, particularly since some experimental  

swept-frequency measurements  of the admittance of a rocket-borne antenna are 

planned. 

worthwhile carrying out in o r d e r  to  gain some insight into the relative validity 

of the vacuum sheath and sheathless  models. 

useful to investigate the possibility of using the infinite antenna cur ren t  a s  a 

means  of obtaining a solution to  the finite antenna. 

approach is due to  Chen and Keller (1962).  

It appears  that fur ther  effort 

The use  of the inhomogeneous sheath model a l so  appears  to  be to  

Finally, it  appears  that i t  may be 

One analysis that u s e s  th i s  
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Appendix A: Examination of the Singularities in the Current  Integral  

We want to establish that while the two components of Iz = Izo + AIz 

contain non-integrable singularit ies a t  p = KEo, the i r  sum does not, so that 

Eq. (42 )  may be integrated along the r e a l  p -axis, so long a s  the electron 

collision frequency is non-zero. 

given in Appendix A 

A @iscussion of the singularit ies of Izo is 

of I, where it is shown that the r e a l  par t  of the cur ren t ,  

I is proportional to  or’  r 
1 ‘or l x m  dx 2 = - In(x)- 

J 
in the vicinity of /3 = KEo, where 

1 
2 
- 

X = [2 (KEo - p  ) / K E o ]  KEo C 

and Ior is thus integrable a t  f3 = KEo. The imaginary par t  of Izo, denoted by 

Ioi, is s imilar ly  proportional to  
m 

at /3 = KEo and is thus non-integrable there .  

Th i s  being the case,  it  is then necessary  to show that A I Z  has  the 

same behavior as Izo in the vicinity of /3 = K Eo’ but is of opposite sign, so 

that the integrandof Eq. (42 )  w i l l  be a proper  one. 

and (38) using the sma l l  argument approximations fo r  the cylindrical  functions 

of argument proportional to LEO, it may be shown f r o m  the second and th i rd  

l ines  of Eq. (37) that 

If w e  examine Eqs.  (37) 
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Consequently, upon using l ines  (1) and (4) of Eq. (37), it follows that 

-1  KEo 
-2 A -  m 

l im  p -KEo 2xEo 

F r o m  Eq. (35a) we then find that 

Thus that par t  of the integrand of Eq. (42) in the square brackets  goes a s  - 

J 

so that the non-integrable p a r t s  of the integral  do indeed cancel. 

not to  say  however that the integrand of Eq. (42 )  becomes zero  at f l  

since we have considered he re  only the dominant t e r m s .  

xL which has been neglected compared with the dominant t e r m  does contribute 

to  the integral  a t  p = KEo. in  the bracket 

of Eq. (42),  where p > - 2  w i l l  be integrable at  the singularity and contribute 

to  the cu r ren t  integral  there .  

That is 

= KEo, 

That par t  of 

Note that t e r m s  which vary  a s  
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